sin ( x ± y ) = sin ( x ) cos ( y ) ± sin ( y ) cos ( x ) {\displaystyle \sin(x\pm y)=\sin(x)\cos(y)\pm \sin(y)\cos(x)}
cos ( x ± y ) = cos ( x ) cos ( y ) ∓ sin ( x ) sin ( y ) {\displaystyle \cos(x\pm y)=\cos(x)\cos(y)\mp \sin(x)\sin(y)}
sin ( x ) ± sin ( y ) = 2 sin ( x ± y 2 ) cos ( x ∓ y 2 ) {\displaystyle \sin(x)\pm \sin(y)=2\sin \left({\frac {x\pm y}{2}}\right)\cos \left({\frac {x\mp y}{2}}\right)}
cos ( x ) + cos ( y ) = 2 cos ( x + y 2 ) cos ( x − y 2 ) {\displaystyle \cos(x)+\cos(y)=2\cos \left({\frac {x+y}{2}}\right)\cos \left({\frac {x-y}{2}}\right)}
cos ( x ) − cos ( y ) = − 2 sin ( x + y 2 ) sin ( x − y 2 ) {\displaystyle \cos(x)-\cos(y)=-2\sin \left({\frac {x+y}{2}}\right)\sin \left({\frac {x-y}{2}}\right)}
tan ( x ) ± tan ( y ) = sin ( x ± y ) cos ( x ) cos ( y ) {\displaystyle \tan(x)\pm \tan(y)={\frac {\sin(x\pm y)}{\cos(x)\cos(y)}}}
cot ( x ) ± cot ( y ) = ± sin ( x ± y ) sin ( x ) sin ( y ) {\displaystyle \cot(x)\pm \cot(y)=\pm {\frac {\sin(x\pm y)}{\sin(x)\sin(y)}}}
sin ( x ) sin ( y ) = cos ( x − y ) − cos ( x + y ) 2 {\displaystyle \sin(x)\sin(y)={\frac {\cos(x-y)-\cos(x+y)}{2}}}
cos ( x ) cos ( y ) = cos ( x + y ) + cos ( x − y ) 2 {\displaystyle \cos(x)\cos(y)={\frac {\cos(x+y)+\cos(x-y)}{2}}}
sin ( x ) cos ( y ) = sin ( x + y ) + sin ( x − y ) 2 {\displaystyle \sin(x)\cos(y)={\frac {\sin(x+y)+\sin(x-y)}{2}}}
cos ( x ) sin ( y ) = sin ( x + y ) − sin ( x − y ) 2 {\displaystyle \cos(x)\sin(y)={\frac {\sin(x+y)-\sin(x-y)}{2}}}