חשבון אינפיניטסימלי/גבולות: הבדלים בין גרסאות בדף

מ
אין תקציר עריכה
מאין תקציר עריכה
 
בתור דוגמה, נביט בארבע סדרות שונות:
*<math>\ 1,\frac{1}{2},\frac{1}{3},\dots</math>. זוהי הסדרה עם האיבר הכללי <math>\ a_n=\frac{1}{n}</math>.
*<math>\ 0,0,0,\dots</math>.
*<math>\ 1,2,3,\dots</math>
*<math>\ 1,0,1,0,\dots</math>.
 
נשים לב לתכונה שמאפיינת הן את הסדרה הראשונה והן את השנייה: בשתיהן אברי הסדרה "מתקרבים" אל המספר 0. הסדרה השלישית בבירור אינה מתקרבת אל 0 אלא "מתרחקת" ממנו, ואילו הרביעית "מזגזגת" - עוברת מ-1 אל 0 ובחזרה.
כמובן שהגדרה זו אינה מדוייקת. מה פירוש "מתקרבים"? ננסה לחדד את הנקודה.
 
עבור הסדרה השלישית נשים לב כי המרחק של האיבר <math>\ a_n</math> מ- <math>\ 0</math> הוא <math>\ n</math>. כלומר, ככל ש-<math>\ n</math> גדול יותר, המרחק של אברי הסדרה השלישית מ-<math>\ 0</math> הולך וגדל. לעומת זאת עבור הסדרה הראשונה המרחק הוא <math>\ \frac{1}{n}</math>, ולכן מרחק זה הולך וקטן ככל ש- <math>\ n</math> הולך וגדל.
 
אם כן, אנחנו רוצים למצוא דרך לנסח בצורה פורמלית את כוונתנו ב"המרחק הולך וקטן". כמו כן נשים לב כי עבור הסדרה השנייה המרחק הוא תמיד <math>\ 0</math>, ולכן אין הכרח שהמרחק ישתנה - אבל אנחנו רוצים שהוא אפס או שילך ויקטן.
 
{{חשבון אינפיניטסימלי/גבולות|מוגבל}}