הבדלים בין גרסאות בדף "מתמטיקה תיכונית/הסתברות/חישוב פונקציית ההסתברות עבור מאורעות מורכבים"

מ
[[תמונה:Probability venn a b union.svg|thumb|left|האיחוד של A ו- B הוא כל מה שב-A '''ו/או''' ב-B]]
[[תמונה:Probability venn a b intersection.svg|thumb|left|החיתוך הוא החלק המשותף ל-A '''וגם''' ל-B.]]
עלינו לחשב את <math>|A\cup B|</math> כדי לחשב את <math>P(A\cup B)</math>. באיורים ניתן לראות ש<math>A\cup B</math> מכיל את התוצאות שהן רק של A, את התוצאות שהן רק של B ואת התוצאות המשותפות. אם נביט באיור התחתון נראה שהתוצאות המשותפות הן בעצם <math>A\cap B</math>. (החיתוך הוא החלק המשותף).
לכן <math>|A\cup B| = |A| + |B| - |A\cap B|</math>.
 
מספר התוצאות באיחוד (<math>|A\cup B|</math ) שווה למספר התוצאות ב-A ועוד מספר התוצאות ב-B פחות מספר התוצאות בחיתוך (<math>|A\cap B|</math ) מכיוון שאת החיתוך אנחנו סופרים פעמיים.
 
:מאורע A הוא {1,2,3,4}, |A| הוא 4.
:מאורע B הוא {3,4,5}, |B| הוא 3.
:<math>A\cap B</math> הוא {3,4}, <math>|A\cap B|</math> הוא 2.
בדוגמה, <math>|A\cup B| = |A| + |B| - |A\cap B| = 4 + 3 - 2 = 5</math>. ההגיון ברור - אנחנו סופרים פעמיים את החיתוך {3,4} פעם אחת ב-A ופעם אחת ב-B. למרות שבאיחוד, התוצאות {3,4} מופיעות פעם אחת בלבד.
 
את ההסתברות עצמה, לאחר שמצאנו את גודל המאורע נחשב בדיוק כמו בסעיף הקודם.
 
<div style="direction: ltr;"><math>P(A\cup B) = P(A)+P(B)-P(A\cap B)</math></div>
 
==ההסתברות של <math>A-B</math>==
[[תמונה:Probability venn a minus b.svg|thumb|left|<math>A-B</math> הוא כל מה שב-A ו'''לא''' ב-B.]]
1,716

עריכות