חשבון אינפיניטסימלי/גבולות/משפטים בסיסיים: הבדלים בין גרסאות בדף

אין תקציר עריכה
מאין תקציר עריכה
אין תקציר עריכה
נראה כי הגבול שלה הוא <math> -1</math>. לכל <math>\ \varepsilon > 0</math> נבחר <math>\ N = \frac{1}{\varepsilon}</math> ואז יתקיים -
<center><math>\ \left| a_n - L \right| = \left| \frac{-n}{n+1} + 1 \right| = \left| \frac{ -n + n + 1}{n+1} \right| = \left| \frac{1}{n+1} \right| = \frac{1}{n+1} < \frac{1}{n} < \varepsilon </math></center>
לכן <math>\lim_{n \to \infty}a_n = -1</math>. כעת אם נרצה לדעת מה הגבול של הסדרה <math>\ bn = \left| a_n \right|</math> כלומר <math>\ b_n = \frac{n}{n+1}</math> כל מה שצריך הוא להשתמש במשפט כדי לדעת כי <math>\lim_{n \to \infty}b_n = 1</math>.
 
{{משפט|תוכן=סדרה מתכנסת מתכנסת לגבול יחיד}}
 
{{הוכחה|
{{משפט|תוכן=יהיו <math>\ a_n , b_n</math> שתי סדרות. אם <math>\lim_{n \to \infty}a_n = L</math> וקיימים שני מספרים שלמים <math>\ n_0, p</math> כך שלכל <math>\ n > n_0</math> מתקיים <math>\ b_n = a_{n+p}</math> אזי גם <math>\lim_{n \to \infty}b_n = L</math>}}
 
}}}}
 
{{משפט|תוכן=יהיו <math>\ a_n , b_n</math> שתי סדרות. אם <math>\lim_{n \to \infty}a_n = L</math> וקיימים שני מספרים שלמים <math>\ n_0, p</math> כך שלכל <math>\ n > n_0</math> מתקיים <math>\ b_n = a_{n+p}</math> אזי גם <math>\lim_{n \to \infty}b_n = L</math>}}
 
{{הוכחה|
 
}}}}
 
{{חשבון אינפיניטסימלי/גבולות|מוגבל}}
161

עריכות