חשבון אינפיניטסימלי/גבולות/משפטים בסיסיים: הבדלים בין גרסאות בדף

אין תקציר עריכה
מאין תקציר עריכה
אין תקציר עריכה
 
{{הוכחה|
נתון כי <math>\lim_{n \to \infty}a_n = L</math>, כלומר לכל <math>\ \varepsilon > 0</math> קיים <math>\ N_0</math> כך שלכל <math>\ n> N</math> מתקיים <math>\ \left| a_n - L \right| < \varepsilon</math>.
 
לכל <math>\ \varepsilon > 0</math> נבחר <math>\ N = max \left\{ N_0, n_0 \left\}</math>, ואז לכל <math>\ n > N</math> יתקיים -
<center><math>\ \left| b_n - L \right| = \ \left| a_{n+p} - L \right| < \varepsilon</math></center>
ולכן <math>\lim_{n \to \infty}b_n = L</math>
}}}}
 
גם המשפט הזה עלול להראות לא ברור, אך הוא משפט חשוב ביותר - ולמעשה גם פשוט ביותר. המשפט הזה בעצם אומר שאם סדרה מסויימת מתכנסת לגבול מסויים, וסדרה אחרת זהה לסדרה הראשונה החל ממקום מסויים - גם הסדרה השנייה מתכנסת לאותו גבול. או לחילופין - אם לוקחים סדרה מתכנסת, מוסיפים לה מספר סופי של איברים, מחסירים ממנה מספר סופי של איברים, ומשנים בה מספר סופי של איברים - זה לא ישפיע על הגבול שלה. הסיבה שהמשפט הזה נכון היא פשוטה - בהתכנסות של סדרה אנחנו לא מסתכלים על האיברים הראשונים בסדרה, למעשה אנחנו לא מסתכלים על אף איבר בסדרה שניתן להצמיד לו מספר - אנחנו מסתכלים מה קורה לאברי הסדרה כשאנחנו מתקדמים לעבר האינסוף, ולכן שינוי שנעשה גם באיבר המליון, המליארג או ה[[w:גוגול|גוגול]] הוא זניח, ולא משפיע על הגבול. עם זאת יש לשים לב שמספר האיברים שאנו משנים בסדרה חייב להיות סופי, אפשר להסיר את 17 האיברים הראשונים, להחליף את האיבר ה42 ב-33 ולהוסיף במקום המליון ואחד את המספר <math>\pi</math> - והגבול של הסדרה לא ישתנה, אבל אם למשל נוסיף את המספר 2 אחרי כל איבר עשירי - הרי ששינינו אינסוף איברים, והמשפט כבר לא יכול לעזור לנו לחשב את הגבול של הסדרה החדשה.
 
{{חשבון אינפיניטסימלי/גבולות|מוגבל}}
161

עריכות