חשבון אינפיניטסימלי/סדרות: הבדלים בין גרסאות בדף

מ
תיקון קישור
מ (תיקון קישור)
##לא ברור כלל שכל הקוראים יהיו מסוגלים להבין את הכלל המנחה של הסדרה מהאיברים שמוצגים.
##גם כאשר ניתן להסיק את הכלל המנחה, אין לנו שום דרך מיידית לדעת את ערכו של מספר הנמצא במקום שרירותי בסדרה.
#דרך נוספת לתאר סדרה של מספרים היא באמצעות נוסחה כללית, המתארת את הערך של האיבר במקום <math>\ n</math> כפונקציה של <math>\ n</math>. למשל, לסדרה שבדוגמה 2 מתאימה הנוסחה הבאה: <math>\ a_n=1+2\cdot n</math>, כאשר <math>\ a_n</math> פירושו "האיבר במקום ה-<math>\ n</math>". לא תמיד הנוסחאות פשוטות כל כך: עבור הסדרה שבדוגמה 4 הנוסחה היא <math>\ a_n=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right)</math> וההגעה לנוסחה זו אינה מיידית. ההוכחה לנוסחה הנ"ל נמצאת ב [[נספח/הוכחה לנוסחה כללית|פה]]. ישנן גם סדרות שאין להן כלל נוסחה לאיבר הכללי.
#ניתן לתאר סדרה גם באמצעות '''כלל נסיגה''' המציג כל איבר כפונקציה של חלק מהאיברים הקודמים. כל כלל נסיגה צריך גם לכלול תנאי התחלה, שהם ערכים מפורשים שניתנים לאיברים הראשונים בסדרה. למשל, עבור הסדרה שבדוגמה 4 קיימים תנאי ההתחלה <math>\ a_1=1,a_2=1</math> וכלל הנסיגה <math>\ a_n=a_{n-1}+a_{n-2}</math> לכל <math>\ n\ge 3</math>.