a = acceleration (m/s²)
g = gravitational constant (m/s²)
F = force (N = kg m/s²)
E k = kinetic energy (J = kg m²/s²)
E p = potential energy (J = kg m²/s²)
m = mass (kg)
p = momentum (kg m/s)
s = position (m)
R = radius (m)
t = time (s)
v = velocity (m/s)
v 0 = velocity at time t=0
W = work (J = kg m²/s²)
τ = torque (J = N m) (torque is the rotational form of force)
s (t) = position at time t
s 0 = position at time t=0
r unit = unit vector pointing from the origin in polar coordinates
θ unit = unit vector pointing in the direction of increasing values of theta in polor coordinates
Note: All quantities in bold represent vectors.
In the discrete case:
s
CM
=
1
m
total
∑
i
=
0
n
m
i
s
i
{\displaystyle \mathbf {s} _{\hbox{CM}}={1 \over m_{\hbox{total}}}\sum _{i=0}^{n}m_{i}\mathbf {s} _{i}}
where
n
{\displaystyle n}
is the number of mass particles.
Or in the continuous case:
s
CM
=
1
m
total
∫
ρ
(
s
)
d
V
{\displaystyle \mathbf {s} _{\hbox{CM}}={1 \over m_{\hbox{total}}}\int \rho (\mathbf {s} )dV}
where ρ(s ) is the scalar mass density as a function of the position vecto
v
average
=
Δ
s
Δ
t
{\displaystyle \mathbf {v} _{\mbox{average}}={\Delta \mathbf {s} \over \Delta t}}
v
=
d
s
d
t
{\displaystyle \mathbf {v} ={d\mathbf {s} \over dt}}
a
average
=
Δ
v
Δ
t
{\displaystyle \mathbf {a} _{\mbox{average}}={\frac {\Delta \mathbf {v} }{\Delta t}}}
a
=
d
v
d
t
=
d
2
s
d
t
2
{\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d^{2}\mathbf {s} }{dt^{2}}}}
|
a
c
|
=
ω
2
R
=
v
2
/
R
{\displaystyle |\mathbf {a} _{c}|=\omega ^{2}R=v^{2}/R}
(R = radius of the circle, ω = v/R angular velocity )
p
=
m
v
{\displaystyle \mathbf {p} =m\mathbf {v} }
∑
F
=
d
p
d
t
=
d
(
m
v
)
d
t
{\displaystyle \sum \mathbf {F} ={\frac {d\mathbf {p} }{dt}}={\frac {d(m\mathbf {v} )}{dt}}}
∑
F
=
m
a
{\displaystyle \sum \mathbf {F} =m\mathbf {a} \quad \ }
(Constant Mass)
J
=
Δ
p
=
∫
F
d
t
{\displaystyle \mathbf {J} =\Delta \mathbf {p} =\int \mathbf {F} dt}
J
=
F
Δ
t
{\displaystyle \mathbf {J} =\mathbf {F} \Delta t\quad \ }
if F is constant
For a single axis of rotation:
The moment of inertia for an object is the sum of the products of the mass element and the square of their distances from the axis of rotation:
I
=
∑
r
i
2
m
i
=
∫
M
r
2
d
m
=
∭
V
r
2
ρ
(
x
,
y
,
z
)
d
V
{\displaystyle I=\sum r_{i}^{2}m_{i}=\int _{M}r^{2}\mathrm {d} m=\iiint _{V}r^{2}\rho (x,y,z)\mathrm {d} V}
|
L
|
=
m
v
r
{\displaystyle |L|=mvr\quad \ }
if v is perpendicular to r
Vector form:
L
=
r
×
p
=
I
ω
{\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} =\mathbf {I} \,\omega }
(Note: I can be treated like a vector if it is diagonalized first, but it is actually a 3×3 matrix - a tensor of rank-2)
r is the radius vector
∑
τ
=
d
L
d
t
{\displaystyle \sum {\boldsymbol {\tau }}={\frac {d\mathbf {L} }{dt}}}
∑
τ
=
r
×
F
{\displaystyle \sum {\boldsymbol {\tau }}=\mathbf {r} \times \mathbf {F} \quad }
if |r | and the sine of the angle between r and p remains constant.
∑
τ
=
I
α
{\displaystyle \sum {\boldsymbol {\tau }}=\mathbf {I} {\boldsymbol {\alpha }}}
This one is very limited, more added later. α = dω /dt
m is here constant.
Δ
E
k
=
∫
F
net
⋅
d
s
=
∫
v
⋅
d
p
=
1
2
m
v
2
−
1
2
m
v
0
2
{\displaystyle \Delta E_{k}=\int \mathbf {F} _{\mbox{net}}\cdot d\mathbf {s} =\int \mathbf {v} \cdot d\mathbf {p} ={\begin{matrix}{\frac {1}{2}}\end{matrix}}mv^{2}-{\begin{matrix}{\frac {1}{2}}\end{matrix}}m{v_{0}}^{2}\quad \ }
Δ
E
p
=
m
g
h
{\displaystyle \Delta E_{p}=mgh\quad \ \,\!}
in field of gravity
Central Force Motion
עריכה
d
2
d
θ
2
(
1
r
)
+
1
r
=
−
μ
r
2
l
2
F
(
r
)
{\displaystyle {\frac {d^{2}}{d\theta ^{2}}}\left({\frac {1}{\mathbf {r} }}\right)+{\frac {1}{\mathbf {r} }}=-{\frac {\mu \mathbf {r} ^{2}}{\mathbf {l} ^{2}}}\mathbf {F} (\mathbf {r} )}
F
(
r
)
=
−
G
m
1
m
2
r
2
{\displaystyle \mathbf {F(r)} =-{\frac {\mathbf {Gm_{1}} \mathbf {m_{2}} }{\mathbf {r^{2}} }}}
G is the gravitational constant, one of the physical constants
נוסחאות הנובעות מנוסחאות הבסיס
עריכה
Position of an accelerating body
עריכה
s
(
t
)
=
1
2
a
t
2
+
v
0
t
+
s
0
{\displaystyle \mathbf {s} (t)={\begin{matrix}{\frac {1}{2}}\end{matrix}}\mathbf {a} t^{2}+\mathbf {v} _{0}t+\mathbf {s} _{0}\quad \ }
if a is constant.
Equation for velocity
עריכה
v
2
=
v
0
2
+
2
a
⋅
Δ
s
{\displaystyle v^{2}=v_{0}^{2}+2\mathbf {a} \cdot \Delta \mathbf {s} }