מתמטיקה תיכונית/מתמטיקה לבגרות/פתרונות מבחני בגרות/אינטרני/קיץ א, תשס"ג (חדשה)/035203/תרגיל 15

טוען את הטאבים...

סעיף א

עריכה

סעיף ב

עריכה

נגזור את פונקצית המנה:

גזירת המונה:

גזירת המכנה:

ועל פי כלל גזירת מנה:

נוציא גורם משותף,

נשווה לאפס ונכפיל במונה (חיובי),

מאחר ש- ניתן להתעלם מהביטוי.

נקבל

כלומר ערך ה- החשוד הינו

נמצא נגזרת שנייה עבור הנגזרת .

מכנה :
מונה: חיובי תמיד ולכן אין צורך ממשי לגזור אותו, נסמן אותו ב-.

הנגזרת המתקבלת

נציב את ערך ה- החשוד ונקבל,

נצמצם,

הביטוי ולכן הנגזרת שלילית. לפיכך, יש לנו נקודת מקסימום.

נמצא את ערך ה- ונקבל .

סעיף ג

עריכה

אסיפטוטה אנכית:

בדיקה שלא מדובר בחור עבור הפונקציה מאחר שאין ביטוי המאפס את , הגבול החשוד אסימפטוטה.

אסיפטוטה אופקית:

נציב ונקבל ועל כן אין אסימפטוטה.

נציב ונקבל

סעיף ד

עריכה

סעיף ה=

עריכה

הערכים בהם לא יכולים להיות חיתוך בין ישר לפונקציה הינם הערכים בתחום   בשל האסימפטוטה ונקודת קיצון כפי שניתן לראות בסרטוט.