6 l o g 6 7 l o g 4 7 {\displaystyle {\sqrt {6}}^{\frac {log_{6}7}{log_{4}7}}}
6 l o g 6 7 l o g 4 7 log a ( b ) = log c ( b ) log c ( a ) l o g 4 7 = l o g 6 7 l o g 6 4 6 l o g 6 7 l o g 6 7 l o g 6 4 6 l o g 6 4 ↓ 6 1 2 l o g 6 4 log a ( x n ) = n ⋅ log a ( x ) 6 l o g 6 4 1 2 a log a ( x ) = x 4 1 2 = 2 {\displaystyle {\begin{aligned}{\sqrt {6}}^{\frac {log_{6}7}{log_{4}7}}\\{\displaystyle \log _{a}(b)={\frac {\log _{c}(b)}{\log _{c}(a)}}}\\log_{4}7={\frac {log_{6}7}{log_{6}4}}\\{\sqrt {6}}^{\frac {log_{6}7}{\frac {log_{6}7}{log_{6}4}}}\\{\sqrt {6}}^{log_{6}4}\\\downarrow \\6^{{\frac {1}{2}}log_{6}4}\\{\displaystyle \log _{a}(x^{n})=n\cdot \log _{a}(x)}\\6^{log_{6}{4{\frac {1}{2}}}}\\{\displaystyle a^{\log _{a}(x)}=x}\\4^{\frac {1}{2}}=2\end{aligned}}}