∠ β = 90 ∘ ∠ α = 45 ∘ ↓ ∠ A = 90 ∘ − 45 ∘ = 45 ∘ ↓ A B = O B = x A O = 1 c m = r (Unit circles) ↓ x 2 + x 2 = 1 2 x 2 = 1 x 2 = 1 2 = 1 2 x = 2 2 ↓ sin ( 45 ∘ ) = cos ( 45 ∘ ) = 2 2 {\displaystyle {\begin{aligned}\angle \beta =90^{\circ }\\\angle \alpha =45^{\circ }\\\downarrow \\\angle A=90^{\circ }-45^{\circ }=45^{\circ }\\\downarrow \\{\color {blue}AB=OB=x}\\AO=1_{cm}={\text{r (Unit circles)}}\\\downarrow \\x^{2}+x^{2}=1\\2x^{2}=1\\x^{2}={\frac {1}{2}}={\sqrt {\frac {1}{2}}}\\x={\frac {\sqrt {2}}{2}}\\\downarrow \\{\color {blue}\sin(45^{\circ })=\cos(45^{\circ })={\frac {\sqrt {2}}{2}}}\\\end{aligned}}}
ע"פ הנחה זו נוכל למצוא את tan ( 45 ∘ ) {\displaystyle \tan(45^{\circ })} : tan ( 45 ∘ ) = sin ( 45 ∘ ) cos ( 45 ∘ ) = 2 2 {\displaystyle \tan(45^{\circ })={\frac {\sin(45^{\circ })}{\cos(45^{\circ })}}={\frac {\sqrt {2}}{2}}}