מתמטיקה תיכונית/חשבון דיפרנציאלי/הגדרת הפונקציה
פונקציה, קלט ופלט
עריכהפונקציה מבטאת את היחס שיש בין שתי קבוצות בעלות איברים: בין איבר לבין איבר .
קבוצה היא אוסף של איברים. לרב האיברים הם מספרים אך היא יכולה להיות מורכבת גם מפרטים אחרים.
דוגמה לפונקציה: הפונקציה מציגה את הקשר בין ל- , לפיו - גדול מ- ב- .
הקבוצה הראשונה נקראת קלט כי היא קולטת את המספרים (ערכי ה- ).
הקבוצה השניה נקראת פלט כי היא פולטת את הערכים המתקבלים (נקראים ערכי ) של בהתאם להגדרת הפונקציה .
פונקציות ממשיות הן פונקציות המייצגות יחס בין מספרים ממשיים כלומר פונקציה שהאיבר שלהם הינו [המספר שייך ( ) למספרים ממשיים ( )].
תחום וטווח של פונקציה
עריכהבחלק זה נגדיר מה הם התנאים המחייבים שיהיו קיימים בין שתי קבוצות בכדי שהיא תחשב פונקציה.
כאמור כל פונקציה מקשרת לפחות בין שתי קבוצות של מספרים :
- התחום (מבוטא באמצעות ) - קבוצת המספרים שהפונקציה יכולה לקבל.
- תחום של פונקציה מגדיר את תחום ההגדרה של פונקציה. תחום ההגדרה של פונקציה הוא כל המספרים שהמשתנה יכול לקבל (דהינו הפונקציה מחזירה עבור משתנה זה ערך). דוגמה: הפונקציה היא פונקציה רציונלית (פונקציה המייצג יחסר של שבר). מאחר שהמכנה של השבר אינו יכול להיות שווה לאפס אז תחום ההגדרה של פונקציה חייב להיות שהמשתנה יהיה שונה מ .
- הטווח (מבוטא באמצעות ) - קבוצה שמכילה את המספרים שהפונקציה יכולה להחזיר.
לא כל יחס בין ל- מייצג פונקציה. על מנת שיחס בין שני איברים יחשב פונקציה יש לקיים את היחס לפי הגדרת הפונקציה.
הגדרת הפונקציה: בהינתן קבוצת מספרים, פונקציה היא כלל (תנאי) שמתאים לכל איבר בקבוצת התחום איבר אחד ויחיד מקבוצת הטווח. במילים אחרות, עבור כל ערך של (תחום) קיים ערך (טווח) אחד ויחיד בלבד אותו הפונקציה מחזירה. לא יהיו שני ערכי עבור אותו .
כלל ההתאמה של הפונקציה - עבור כל ערך של (תחום) קיים ערך (טווח) אחד ויחיד בלבד אותו הפונקציה מחזירה.
-
פונקציה
-
לא פונקציה לערך קיימים שני ערכי
כלל ההתאמה
עריכההפונקציה מקיימת את כלל התאמה. לפי כלל ההתאמה אנו יודעים את היחס בין שני איברים של הפונקציה ויודעים איך לייצג את הפונקציה. ניתן לייצג פונקציה במספר דרכים.
פונקציה פשוטה ( )
עריכהדרך ההצגה פשוטה (בהצגה זו נקראת הפונקציה - פונקציה פשוטה) היא באמצעות משוואה . כאשר צד שמאל של המשוואה מציג את סימון הפונקציה עליו נרחיב תחת הכותר פונקציה מורכבת. בצד ימין מוצג כלל ההתאמה. דוגמה: .
דרך הצגה זו מתאימה לתיאור של הגדרת פונקציה (שניה) כפי שהיא מוגדרת בספר של בני גורן[1] בו המשתנה y הוא פונקציה של המשתנה הבלתי תלוי אם מקיימים את כלל התאמה.
בצורת סימון זו נהוג לחשוב על כעל משתנה כמו . להבדיל מ- , ערכו של לא נבחר בצורה שרירותית אלא הוא תלוי בערכו של (כלומר הוא תוצר, פלט). מסיבה זו נהוג לכנות את כמשתנה הבלתי תלוי (ארגומנט) ואת המשתנה התלוי.
פונקציה מורכבת
עריכההרכבת פונקציה מדמה לפונקציה המורכבת משלושה קבוצות:
- קבוצת הקלט - קבוצה הקולטת בתוכה את האיברים.
- קבוצה אמצעית - קבוצה אשר קולטת אברים מקבוצה ראשונה ומבצעת עליהם פעולה משנית.
- קבוצת הפלט - הקבוצה הפולט את האיברים לאחר ביצוע "פקודת הפונקציה".
בדרך כלל, בפונקציות מורכבות יותר, נהוג לרשום במקום את האות (קיצור למילה "פונקציה באנגלית - function). ההופעה של בסוגריים פירושה שהפונקציה פועלת על המשתנה .
ניתן להחליף את בכל אות שרוצים. בדרך כלל נעזרים באותיות ו-
דרך נוספת מקובלת, היא להוסיף מספר לפונקציה, הרשום בקטן ליד שמה: . למספר המוקטן קוראים "האינדקס של f".
-
תיאור התמונה
-
תיאור התמונה
פעולות החשבון בין פונקציות
עריכהבין פונקציות שונות ניתן להגדיר את פעולות החשבון :
- פונקצית סכום - חיבור
- חיסור
- כפל
- חילוק או
תחום ההגדרה של פונקציות מורכבות הוא תחום ההגדרה של כל אחת הפונקציות מהפונקציות מהם מורכבת הפונקציה המורכבת.
דוגמה: אם הפונקציה מורכבת מ ומ אז תחום ההגדרה הפונקציה המורכבת הוא איחוד תחומי ההגדרה של הפונקציות ו- (דהיינו )
- ^ בני גורן, אלגברה 4 ו-5 יחידות לימוד, לתלמידי בתי ספר תיכונים במגמות הביולוגית והריאלית לנבחנים חיצוניים ללומדים במכינות האוניברסיטאיות למתכונננים לבחינות כניסה לטכניון ולאוניברסיטה, עמ' 15